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We present an improved method to generate a sequence of structured meshes even when
the physical domain contains deforming inclusions. This method belongs to the class of
Arbitrary Lagrangian–Eulerian (ALE) methods for solving moving boundary problems. Its
tools are either (a) separate mappings of the domain boundaries and enforcing the node
distribution on lines emanating from singular points or (b) domain decomposition and sep-
arate mappings of each subdomain using suitable coordinate systems. The latter is shown
to be more versatile and general. In both cases a set of elliptic equations is used to generate
the grid extending in this way the method advanced by Dimakopoulos and Tsamopoulos
[Y. Dimakopoulos, J.A. Tsamopoulos, A quasi-elliptic transformation for moving boundary
problems with large anisotropic deformations, J. Comput. Phys. 192 (2003) 494–522].
We shall present examples where this earlier method and all other mesh generating meth-
ods which are based on a conformal mapping or solving a quasi-elliptic set of PDEs fail to
produce an acceptable mesh and accurate solutions in such geometries. Furthermore, in
contrast to other methods, appropriate boundary conditions and constraints such as,
orthogonality of specific mesh lines and prespecified node distributions on them, can be
easily implemented along a specific part of the domain or its boundary. Hence, no attrac-
tive terms at specific corners or singular points are needed. To increase the mesh resolution
around the moving interfaces while keeping low the memory requirements and the com-
putational time, a local mesh refinement technique has been incorporated as well. The
method is demonstrated in two challenging examples where no remeshing is required in
spite of the large domain deformations. In the first one, the transient growth of two bub-
bles embedded in a viscoelastic filament undergoing stretching in the axial direction is
examined, while in the second one the linear and non-linear dynamics of two bubbles in
a viscous medium are determined in an acoustic field. The large elasticity of the filament
in the first case or the large inertia in the second case coupled with the externally induced
large deformations of the liquid domain requires the accurate calculation which is achieved
by the method we propose herein. The governing equations are solved using the finite ele-
ment/Galerkin method with appropriate modifications to solve the hyperbolic constitutive
equation of a viscoelastic fluid. These are coupled with an implicit Euler method for time
integration or with Arnoldi’s algorithm for normal mode analysis.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The accurate numerical simulation of many scientifically and technologically important processes with free or moving
boundaries has been a challenging research area for many decades. Computational methods for numerical simulation of such
. All rights reserved.
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problems require powerful discretization techniques based on the use of appropriate grids. These are discrete sets of points
along lines well covering the physical domain, which must satisfy some specific properties like smoothness and orthogonal-
ity along certain boundaries so that the accuracy and the stability of the calculation is guaranteed [1]. In particular, orthog-
onality only near the moving boundary is often necessary to achieve accurate results, for example, in simulations of flows
where boundary layers arise.

Depending on the method generating the computational grid, the available numerical approaches can be classified as
Lagrangian, Eulerian and mixed Lagrangian–Eulerian. In the Lagrangian formulation, the coordinate system is moving with
the fluid following its local velocity. This method has several useful properties since the interfaces can be specifically delin-
eated and precisely followed, the free-surface boundary conditions are easily applied and curved grid boundaries of any arbi-
trary shape can be treated. However, it has some significant disadvantages since the grid becomes very often severely
distorted and consequently demands multiple reconstructions. Indicatively, Saksono and Peric [2] have used a Lagrangian
method for simulating the oscillations of droplets and the stretching of a liquid bridge, where a remeshing procedure proved
to be an essential feature for improving the overly distorted finite elements. On the other hand in the Eulerian formulation,
the grid points remain fixed relative to the observer, while the fluid moves through the cells. This method has the advantage
of being able to handle extreme interface distortions, but the interface is not as sharp and requires a special procedure to
locate it with some accuracy. Hirt and Nichols [3] implemented the Volume of Fluid (VOF) method in an Eulerian hydrody-
namics code in order to study a variety of highly complicated free surface flows. A significant improvement for Eulerian
methods is the front tracking method [4,5] because it determines the interface explicitly using a separate grid for it in addi-
tion to that used for the fluid volume.

An intermediate approach is the arbitrary Lagrangian–Eulerian (ALE) method, in which each node of the mesh moves
independently of the local fluid velocity. Its main advantage is that it reduces the number of remeshing procedures, and con-
sequently it reduces the projection errors that are introduced after such a remeshing cycle, especially in the continuity equa-
tion. However, remeshing techniques still may be needed even in the ALE method. This can be minimized by employing a
curvilinear coordinate system that conforms to the moving boundary. The irregular physical domain is mapped onto a simple
and time-independent computational one in which the moving boundary coincides with one of the coordinate surfaces (or
part of it) and in which it is trivial to generate the mesh. There are two ways to do this by using either algebraic expressions
or partial differential equations. The algebraic grid generation methods are based on simple interpolation functions [6]. How-
ever, with this procedure problems arise related to smoothness, node overlapping and grid-line folding [7]. Hence heuristic
rules must be introduced for controlling the mesh development. Moreover, this technique is restricted to simple initial
shapes and small deformations.

The elliptic mesh generation schemes are based on the solution of a partial differential equation (PDE) for each compu-
tational coordinate; see an extensive review by Thompson et al. [8]. The simplest of the mesh generation algorithms is con-
formal mapping, where the Cauchy–Riemann equations are satisfied. Conformal meshes are smooth and orthogonal and
when the boundary shape is the only constraint on the mesh generated, they are usually the most efficient ones [8]. How-
ever, conformal mapping does not allow control of mesh spacing. Orthogonal meshes [9,10] become then the simplest
choice, since they are less restricted than conformal meshes. Christodoulou and Scriven [10] in particular have extended
the earlier work in [9] incorporating new features in the system of the differential equations, by minimizing a functional
which quantifies the deviation of the mesh from an orthogonal one that satisfies generalized Cauchy–Riemann equations
and by including forcing terms. This work was further improved by Tsiveriotis and Brown [11] who proposed a ‘mixed map-
ping method’. It seemed to allow independent control of mesh spacing in each direction which is important when deforma-
tions of the free surface preferentially arise in one direction. To improve the accuracy of the solution vector on the interface,
they also proposed a non-conforming two-to-one element splitting scheme [12], for the transition from a coarser mesh in the
bulk to a finer one close to the interface.

All these ideas have formed the basis for the elliptic grid generation scheme introduced by Dimakopoulos and Tsamopo-
ulos [13]. It is a very robust and flexible method which takes into consideration all the intrinsic features of the developing
surface and the deforming control volume. It has been tested in a wide range of numerical simulations [13–22] and proved
very satisfactory even at very large deformations. The main advantages of this elliptic grid generation scheme are

� It can be used to solve a variety of problems such as: transient problems [13–20], steady state problems [21,22], and deter-
mine their stability [23] requiring minimum changes in the numerical algorithm and so a minimum input from the user.

� Large deformations can be simulated with minimum or even without remeshing cycles. Thus, it reduces errors due to fre-
quent variable interpolations between meshes.

� Structured meshes can be adopted for minimizing the error dispersion/amplification [24] and improve numerical stability
and accuracy.

A similar method is the pseudo-solid mesh generation technique (Sackinger et al. [25]), which treats the material as a
compressible, elastic solid and solves Cauchy’s equilibrium equation to determine the location of the nodal positions. How-
ever, with this method remeshing is often necessary since it has not been adopted to allow large distortions of the mesh
[25,26]. Actually this issue is closely related with the boundary conditions that should be used. These must be physically
consistent with the governing equations, which is not always possible. Such natural conditions for the pseudo-solid method
do not include important constraints such as prespecified node distribution or line orthogonality along specific parts either
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of the boundary or in the interior of the control volume leading to severe distortion of the mesh near a static contact point
(see Fig. 14 in [26]).

All these ALE-type methods for generating a structured grid fail when the domain contains inclusions and especially if
their shapes undergo large deformations or the simulations are carried out for long times. This is expectable because they
inevitably smooth out the mesh near any singular point, such as a corner (slope discontinuity of any variable on any bound-
ary) or a point of large curvature or the poles of the bubbles included in the physical domain in our specific applications. This
smoothing appears as a repulsion of the mesh lines away from such singular points. On the contrary, this is exactly where a
higher discretization is needed for accurate computations. This makes imperative the special and careful treatment of the
inclusions.

Body-fitted curvilinear coordinates for domains containing 2D bodies with fixed boundaries have been proposed earlier.
The simpler such method maintains the connectivity of the domain and represents the inclusion(s) by empty slab(s) or slit(s)
[27]. Then, both coordinate lines in computational space experience a discontinuity at certain points on its boundary. As ex-
plained above, this leads to failure of computations, and more so in moving boundary problems. The second method [27–29]
transforms the domain into a simply connected one by introducing as many branch-cuts as needed at arbitrary positions to
connect once the inclusions with each other and another branch-cut to connect one of the internal bodies with the external
boundary of the domain. Typically, one of the coordinates is assigned the same constant value on all the internal interfaces
and all the branch-cuts between the bodies and another value at the external boundary, whereas the other coordinate takes
two different constant values on the cut between one of the bodies and the outer interface. This is an O-type opening of the
domain. A different positioning of the cuts leads to a C-type opening, etc. In each one of the numerous computational do-
mains that may be created [27], this procedure makes even the interfaces of the inclusions in physical space external bound-
aries transforming the multiply connected domain to a simply connected one. Each cut appears as two segments on the
transformed boundary, each segment corresponding to the two branches of the cut in physical space. However, there at least
two disadvantages in applying this method: (i) the two branches of each cut comprise re-entrant boundaries and one of them
has a different orientation in computational space requiring special treatment to impose continuity of the dependent vari-
ables and their derivatives there and (ii) the resulting mesh may not have the desired distribution of nodes and may require a
lot of effort to adjust them as needed. Moreover, in deforming inclusions this adjustment may require modification in time,
thus increasing the computational effort and time. The last available method [27,30,31] breaks up the physical domain into
several smaller blocks or subdomains and then generates separate meshes in each individual block. Hence, it has been called
multiblock or block-structured or domain decomposition method. It can be used in either simply or multiply connected do-
mains. In the second case it may be coupled with the previous method of introducing branch-cuts. Each subdomain is chosen
to be geometrically much simpler than the entire configuration and, thus, to be more easily discretizable by a quasi-elliptic
method, for example. On the boundaries of each subdomain mesh points are introduced just as in actual domain boundaries.
Across the boundaries of the subdomains the meshes maybe unmatched or patched without enforcing continuity of mesh
lines or with enforcing continuity of the mesh lines or even of their slopes. In the above order, these three possibilities offer
more advantages to the numerical solutions, but also become more difficult in generating the mesh. For example, when mesh
line continuity is enforced, the location of the interface nodes requires an additional data indexing procedure to link the sub-
domains across the interfaces. In spite of generating meshes of higher quality, the difficulty in automating the multiblock
method with mesh continuity has inhibited its application to moving boundary problems.

The main contribution of this paper is the presentation of a new methodology for generating accurate meshes in domains
with deforming inclusions with or without domain decomposition. The presentation is confined to problems with axial sym-
metry in the interest of reducing the storage requirements and the computing time. Clearly these problems have their 3D
counterparts and, because of their technological importance, we are currently extending the present numerical method to
deal with them. We test our scheme and we present results for two problems of scientific and technological interest: (i) bub-
ble growth in viscoelastic filaments undergoing stretching and (ii) bubble interactions in an acoustic field fully accounting
for viscous effects. In addition, we apply our numerical technique along with an appropriate mesh refinement methodology
in order to limit the large number of grid points only in regions where they are needed the most.

The physics and motivation to study the chosen two problems are given in the following two subsections. The govern-
ing equations are given in Section 2 and the general solution methods in Section 3. Section 4 is dedicated to the specific
procedures and methods for mesh generation in domains with deforming inclusions. There we will show that the first
example can be solved accurately using a single domain with different mappings of segments of the physical boundaries
to segments of the computational boundaries and with imposing the node distribution along lines that emanate from the
poles of the bubbles. These lines play the role of pseudo-boundaries. In essence, this method corresponds to introducing
branch-cuts along the axis of symmetry and using the second of the three methods we discussed above for solving prob-
lems with inclusions. This idea, when applied to the second example, fails completely as we show with the two most
promising mappings among a variety of mappings we have tried. Indeed, the resulting grids are too skewed and irregular
and cannot follow closely the deforming boundaries of the inclusions. Now splitting the domain to subdomains, each one
having its own curvilinear coordinate system, becomes imperative. The entire region is treated as a single one when writ-
ing and solving the governing equations. The curved interfaces bounding the subregions form internal interfaces across
which information must be transferred. Thus, this problem can be solved accurately for long times by efficiently advancing
some of the ideas from the third of the methods mentioned above. In Section 5 we give numerical results using the opti-
mum methods for each problem.
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1.1. Bubble growth in Newtonian and viscoelastic filaments undergoing stretching

Bubbles or cavities develop in thin films of materials made by block copolymers (such as those based on styrene–isoprene
triblocks or acrylates) that are extensively used nowadays as self-adhesives or pressure sensitive adhesives (PSAs). PSAs, in
particular, have the ability to average stresses over large volumes of material, thus avoiding the sharp stress concentrations
responsible for the failure of structural glassy adhesives. Controlling their adhesive properties is important, since it governs
their suitability in non-structural bonding applications. Additionally, understanding the role of the small cavities that prop-
agate along the material and cause its fracture at high deformation levels and how they are affected by the viscoelastic prop-
erties of the filament is critical in our ability to design new polymeric materials with optimal adhesive properties. In the
literature, theoretical or numerical studies of bubble dynamics have been restricted either to spherically symmetric bubbles
growing in an infinite non-Newtonian liquid [32,33] or to the transient deformation of a single bubble or droplet in a uniaxial
extensional flow of Newtonian or viscoelastic liquids for which the flow field far away from the bubble or droplet is known
[34,35]. More recently, Foteinopoulou et al. [19] have studied the deformation of a single bubble in a Newtonian or visco-
elastic filament undergoing stretching. Later they extended their work to multiple bubbles that grow and deform simulta-
neously in a Newtonian liquid [18], but the material deformations remained smaller than in testing experiments because of
the need for higher mesh refinement close to the moving interfaces.

1.2. Bubble interactions in an acoustic field fully accounting for viscous effects

Bubble dynamics in acoustic fields has been studied extensively. In particular, the interaction of pulsating bodies in a fluid
was first studied by Bjerknes [36,37]. Pulsating bubbles interact with nearby solid surfaces and also, interact with each other
with a force that can be attractive or repulsive depending on whether they oscillate in or out of phase, respectively. In the
linear limit and for inviscid fluids, it can be shown that its magnitude is proportional to the bubble volumes and inversely
proportional to the square of their distance. This type of force is known as the secondary (or mutual) Bjerknes force and is
responsible for several interesting dynamic phenomena. The mutual Bjerknes force plays an important role in many acoustic
phenomena or engineering applications such as the formation of bubble grapes [38], the purification of liquid melts, the sep-
aration of a gas from its solution in a liquid, etc. Over the past decades a significant amount of research has been devoted to the
study of single bubble dynamics (see [39] for a review on earlier work on the subject), as well as in the problem of bubble–
bubble interaction [40]. The theoretical approach to the secondary Bjerknes force assuming inviscid fluids by Pelekasis and
Tsamopoulos [41,42] has produced interesting results in a wide range of forcing frequencies, pressure amplitudes and bubble
sizes. The surface of the bubbles has been allowed to deform from spherical retaining its axial symmetry. However, in those
studies neglecting fluid viscosity led to very large bubble deformations that frequently ended up in bubble breakup. This
makes necessary the examination of the effect of fluid viscosity on the bubble dynamics not only to determine if it reduces
these large deformations but also to examine how it modifies the secondary Bjerknes force.

2. Governing equations

In both problems, we consider two initially spherical gas bubbles which are at rest in a stationary fluid. We assume axial
symmetry around the line connecting their centers of mass and that the surrounding fluid is incompressible with density q*,
whereas the density and viscosity of the gas in the bubbles are much smaller than those of the liquid. Hence in general, the
pressure inside the bubbles varies with time only and according to a polytropic law. In what follows an asterisk indicates a
dimensional quantity.

The flow in the liquid is governed by the momentum and mass conservation equations, which in their dimensional form
are
q�
Du�

Dt�
� r� � ð�P�Iþ s�Þ ¼ 0; ð1Þ

r� � u� ¼ 0; ð2Þ

where D

Dt� stands for the convective derivative, r* for the gradient operator, u* and P* are the velocity vector and pressure in
the liquid, respectively, and s* is the extra stress tensor, which is generally split into a purely viscous part, 2l�s _c� and a poly-
meric contribution s�p
s� ¼ 2l�s _c� þ s�p; ð3Þ
where l�s is the Newtonian (solvent) viscosity and _c� is the rate of strain tensor defined as _c� ¼ 1
2 ðr

�u� þ r�u�TÞ. For a New-
tonian fluid, s�p ¼ 0, whereas for a polymeric material the viscoelastic part of the extra stress tensor is related to the rate of
strain tensor through a constitutive equation that describes the rheology of the polymer. As such we use the differential
model that has been proposed by Phan-Thien and Tanner (PTT) [43] assuming affine motion of the polymer chains
Yðs�pÞs�p þ k� s�p
}
�2l�p _c� ¼ 0; ð4Þ
where k* is the material relaxation time which is related to its elastic behavior, l�p the polymer viscosity and the symbol }
over the viscoelastic stress denotes the upper convected Maxwell derivative defined as
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s�p

}
¼

Ds�p

Dt�
� ðr�u�ÞT � s�p � s�p � r�u�; ð5Þ
where the superscript T stands for the transpose of a tensor and the exponential form [44] of the PPT model is used
Yðs�pÞ ¼ exp
ePTT

l�p
k�trs�p

" #
: ð6Þ
The parameter ePTT in the PTT model imposes an upper limit to the elongational viscosity, which is inversely proportional to
this parameter. Moreover ePTT is related to the shear and extensional thinning of the polymeric material.

We note that for a Newtonian liquid, the extra stress tensor, s*, is not an additional unknown, but it is calculated directly
from the velocity field. However, for a viscoelastic model, such as the PTT model chosen here, the stress components are un-
known quantities which should be calculated through the constitutive equation. The hyperbolic nature of the latter neces-
sitates for its accurate solution in various viscoelastic flows at high material elasticities, the Elastic-Viscous Split Stress
(EVSS-G) method (Brown et al. [45]). This method splits the polymeric part of the extra stress tensor into a purely elastic,
R�, and a viscous part
s�p ¼ R� þ 2l�p _c�: ð7Þ
Moreover, an independent and continuous interpolation, G*, of the components of the velocity gradient tensor,r*u*, is intro-
duced wherever the latter arises in the constitutive equation:
G� ¼ r�u�: ð8Þ
For more details see [16,19,45]. In summary, for a Newtonian fluid Eqs. (1)–(3) need to be solved with s�p ¼ 0, whereas for a
viscoelastic fluid the entire set of Eqs. (1)–(8) must be solved simultaneously.

Along the free surface of the bubbles, the velocity field should satisfy a local force balance between the capillary forces,
viscous and elastic stresses in the liquid and pressure inside each bubble i:
n � ð�P�Iþ s�Þ ¼ �P�ginþ 2H�r�n; ð9Þ
where P�gi is the pressure inside bubble i, r* is the surface tension, assumed to be the same in all liquid/air interfaces, n is the
outward (for the liquid domain) unit normal to each free surface and 2H* is its mean curvature which is defined as
2H� ¼ �r�s � n; r�s ¼ ðI � nnÞ � r�: ð10Þ
The pressure inside each bubble varies following the instantaneous changes in the bubble volume according to
P�gi ¼ P�gio
V�io
V�i

� �c

; i ¼ 1;2; ð11Þ
where P�gio and V�io are the initial pressure and the volume of bubble i, V�i its instantaneous volume and c is taken to be equal
to 1.4. The volume of each bubble is calculated after each time step through
V�i ¼
Z Z Z

dV�i ; i ¼ 1;2; ð12Þ
where dV�i ¼ r� dr� dz� dh when the bubble interface is described in cylindrical coordinates, and dV�i ¼ r�2s sin hdr�s dhd/ when
spherical coordinates are used. In general, the subscript s indicates spherical coordinates. Additionally, the shapes of the free
surfaces are determined by invoking the kinematic condition
DF�

Dt�
¼ u� ð13Þ
where F* denotes the position vector of the interface, which is given by the following expressions F� ¼ r�er þ z�ez and
F� ¼ r�s er , when cylindrical or spherical coordinates are used, respectively. Along the axis of symmetry the usual symmetry
conditions are imposed: (a) the normal to the axis component of velocity vector is set to zero and (b) the tangential to the
axis component is symmetric.

2.1. Cavities inside a filament undergoing stretching

The liquid filament is assumed to have initially a cylindrical outer surface with a uniform radius R�co and to be confined
between two solid and coaxial disks each of radius R�co also, located at initial distance H�o. The filament is permanently bonded
on both disks and is being stretched by pulling the upper disk with a constant velocity U�o, while the lower disk remains sta-
tionary. Due to the assumption of axial symmetry, both bubbles inside the filament are assumed to lie along its axis of sym-
metry. Their radii are initially R�b1;o and R�b2;o, respectively, and their centers are located at distances h�1;o and h�2;o above the
lower disk. The initial distance of the centers of the bubbles is denoted as L�o � h�2;o � h�1;o. A schematic of the system consid-
ered is shown in Fig. 1. As the upper disk is being pulled, the height H�ðt�Þ ¼ H�o þ U�ot� of the filament increases, both bubbles
deform and translate along the filament axis, and all liquid/gas interfaces get distorted.
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In order to readily describe the filament interface, it is convenient to formulate this problem in cylindrical coordinates,
although this choice complicates the description of the bubble surfaces. The center of the coordinate system is located at
the center O of the lower disk. The axial symmetry reduces this problem to a two-dimensional one, defined in the region
enclosed by the outer surface of the liquid and the axis of symmetry of the cylinder or the bubble surfaces in the radial direc-
tion and by the two disks in the axial direction. We scale all lengths with the radius of the first bubble R�b1;o, velocities with
the pulling velocity U�o, time with R�b1;o=U�o and stresses and pressure with a viscous scale l�U�o=R�b1;o where the total dynamic
viscosity is l� ¼ l�s þ l�p. Hereafter, a variable without an asterisk indicates the corresponding dimensionless variable. Sim-
ilarly, the equations governing this problem, when they are rendered dimensionless, retain their form, except for the
momentum balance, the constitutive law and the interfacial force balance which become
Re
Du
Dt
þrP �r � R� 2r � _c ¼ 0; ð14Þ

YðspÞRþ De R
}
þ2Deð1� bÞD

}
�2ð1� bÞð1� YðspÞÞD ¼ 0; YðspÞ ¼ exp ePTT

De
1� b

trsp

� �
; ð15Þ

n � ð�PIþ sÞ ¼ �Pginþ
2H
Ca

n; i ¼ 1;2;3; ð16Þ
where D ¼ 1
2 ðGþ GTÞ and the four dimensionless numbers that arise are the Reynolds number, Re ¼ qU�0R�b1;0=l�, the Deborah

number, De ¼ kU�0=R�b1;0, which is a measure of fluid elasticity, the solvent viscosity ratio b ¼ l�s=l� and the capillary number
Ca ¼ l�U�0=r�, expressing the ratio of viscous to capillary forces. In this problem Eq. (16) is applied not only along the bub-
ble–liquid interfaces (then, i = 1, 2 and Pgi stands for the time-varying, gas pressure inside bubble i), but also along the liquid–
air interface, (then i = 3 and Pgi ¼ 0 sets the surrounding air pressure to zero). The pressure inside each bubble and the cor-
responding volume of the bubbles is calculated via Eqs. (11) and (12), respectively. Along the axis of symmetry the usual
symmetry conditions are used, written in cylindrical coordinates
ur ¼ 0; ð17Þ
@uz

@r
¼ 0: ð18Þ
Fig. 1. Schematic of two spherical cavities inside an initially cylindrical filament.
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2.2. Interacting bubbles in an acoustic field

Initially, the two bubbles are spherical, surrounded by a viscous liquid and at equilibrium. Hence the initial pressure inside
them is set solely by capillarity. Subsequently, they are set in motion by a step change in the far-field pressure. This abrupt
change in pressure causes volume oscillations in the bubbles, which, in turn, generate a disturbance in the pressure around
them. The later induces a force between them which is always attractive, for a step change in pressure (see Bjerknes [36,37])
and a deformation of their interfaces, depending on the distance between them and the fluid properties. Fig. 2 illustrates a
schematic of this flow geometry. The two bubbles are initially spherical with radii R�bA, R�bB and distance D* between their
two centers of mass. A convenient way to describe the far-field spherical symmetry of the pressure and velocity fields is to
introduce a spherical coordinate system centered at the middle of the distance between the bubble centers. This choice com-
plicates the description of the bubble surfaces, as in the previous problem, while the axial symmetry reduces it to a two-
dimensional one defined in the region enclosed by the outer spherical surface and the axis of symmetry or the bubble surfaces.

We scale all lengths with the radius R�bA of the left bubble. Due to the absence of a characteristic velocity, surface tension is
used for making velocity, time and pressure dimensionless. So, we scale them with ðr�=R�bAq�Þ

1=2, ðR�3bAq�=r�Þ
1=2 and ðr�=R�bAÞ,

respectively. The flow is governed by the momentum and mass conservation equations, Eqs. (1) and (2), and only the
momentum balance is modified when written in dimensionless form
Du
Dt
þrP � Ohr � ðruþruTÞ ¼ 0: ð19Þ
The dimensionless number that arises in it is the Ohnesorge number, Oh ¼ ðl�2s =q�R
�
bAr�Þ

1=2, a measure of viscous over inertia
and capillary forces. For time greater than zero, the pressure at infinity increases over its static value Ps as
P1 ¼ Psð1þ eÞ; ð20Þ
where e is a measure of the applied disturbance. Along the free surface of the bubbles, we impose Eq. (9) which in dimen-
sionless form here becomes
n � ð�PIþ sÞ ¼ Pgi þ 2Hn; i ¼ A; B; ð21Þ
where i = A, B stands for the interface of either bubble. The pressure inside each bubble is calculated via Eq. (11), while their
volume is calculated in spherical coordinates via Eq. (12). Along the axis of symmetry, if spherical coordinates are used for
the flow problem the symmetry conditions become
uh ¼ 0; ð22Þ
@ur

@h
¼ 0: ð23Þ
The infinite domain of the fluid is truncated to a finite spherical domain around the two bubbles with a radius much larger
than the bubble radius so this boundary does not affect the flow around the two bubbles. This is facilitated using the open
boundary condition suggested by Papanastasiou et al. [46].

3. Numerical implementation

3.1. Elliptic grid generation

In order to accurately and effectively simulate moving boundary flows in domains with deforming inclusions we have
chosen the mixed finite element method to discretize the velocity, pressure and extra stress (for viscoelastic materials only)
Fig. 2. Schematic of the geometry and the coordinate system of the two interacting bubbles in an acoustic field.
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fields, combined with an advanced elliptic grid generator for the initial construction and subsequent motion of the mesh
nodes in the liquid domain. The set of equations generating the location of the grid points in the entire domain or in each
subdomain is capable to relocate them in response to the evolution of the free surface. Their distribution over the domain is
readjusted dynamically to keep a relatively uniform or smoothly varying concentration of nodes in the entire physical do-
main, without relying on prior knowledge of the interface location and deformation or intervention during the calculations
or placing non-physical restrictions on its shape.

In particular, a mapping of the physical (sub)domain is used onto a fixed with time computational domain. This is sche-
matically represented as ðX;Y; tÞ!J ðn;g; t̂Þ, where J is the Jacobian of the transformation. According to this mapping, every
point particle being at time t at a position with coordinates (X,Y) in physical space is mapped to a point particle in a new
plane with global coordinates (n,g). The (X,Y) coordinates stand for either cylindrical (r,z) or spherical coordinates ðrs; hÞ.
Subsequently, a mesh is generated in computational space with the desired properties. Then the positions of the nodes in
physical space are computed by solving a set of partial differential equations. The three essential properties of a mapping
are: smoothness, orthogonality and concentration of the (coordinate) curves along which the mesh points lie in physical
space [27,47]. The coordinate lines that are parallel to the deforming interface must follow closely its large distortions
and even concentrate near it in order to better resolve the boundary conditions there, without the strong requirement that
they remain orthogonal to the rest of the boundaries [11]. On the other hand, the coordinate lines normal to the interface
must intersect them nearly orthogonally. Keeping these in mind, Dimakopoulos and Tsamopoulos [13], concluded that
the following system of quasi-elliptic partial differential equations combines these features
r � e1

ffiffiffiffiffiffiffiffiffiffi
FðgÞ
FðnÞ

s
þ ð1� e1Þ

 !
rg

( )
¼ 0; ð24Þ

r � rn ¼ 0: ð25Þ
Eq. (24) generates the curves on which g is a constant. The introduction of the term with the square root here, allows them to
be nearly normal to the highly deforming interface. Eq. (25) generates the curves on which n is a constant. These are nearly
parallel to the interface and must follow it while it deforms. Its large deformations may lead to highly obtuse or highly acute
angles with its neighboring boundaries. This necessitates relaxation of orthogonality between these other boundaries and
the n-coordinate lines making the square root term inappropriate in Eq. (25) as clearly demonstrated in [13]. In the expres-
sions above F(q), q = n, g, is given by

� FðqÞ ¼ r2
q þ z2

q ðwhen cylindrical coordinates are usedÞ ð26aÞ
2 2 2
� FðqÞ ¼ rs;q þ rs hq ðwhen spherical coordinates are usedÞ ð26bÞ
in which when the variable q appears as a subscript it indicates a partial derivative with respect to it. Also, e1 is an empir-
ically chosen parameter, ranging between 0 and 1, that controls the smoothness of the mapping relative to the degree of
orthogonality of the mesh lines. This parameter is adjusted by trial and error and in the following simulations is set equal
to 0.1.

The way the mesh generating equations, Eqs. (24) and (25), are written implies that (n,g) are unknown functions, while
(X,Y) are the independent variables. This is preferred over its inverse, which is actually the case, because it makes the trans-
formation one-to-one provided that its curvature is non-positive and the boundary of the computational domain is convex.
These can be achieved by construction [48]. This property of the differential operator decreases the tendency of grid over-
lapping. Moreover, the flow equations are originally written in the physical domain with independent variables (X,Y), so we
need to transform the entire set so that (n,g) are the independent variables. This is achieved through the chain rule differ-
entiation; for more details see [13].

Equally important for the quality of the constructed mesh are the boundary conditions on Eqs. (24) and (25). So, on the
fixed part of the boundary we replace the mesh generating equations with the equation that defines the boundary curve,
while the remaining degree of freedom is used for controlling the node distribution there
d2 F
_

ðqÞ
dq2 ¼ 0; q ¼ n;g; ð27aÞ
where

� _
Z q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 2
q

FðqÞ ¼
0

w1rq þw2zqdq ðwhen cylindrical coordinates are usedÞ ð27bÞ

_
Z q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
�

2 2 2
FðqÞ ¼
0

w1rs;q þw2rs hqdq ðwhen spherical coordinates are usedÞ ð27cÞ
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and w1 + w2 = 2. In the above equation, F
_

ðqÞ is a weighted arc-length along the free surface and w1, w2 are two weights,
which have to be adjusted by trial and error to optimize performance. Setting w1 = w2 = 1, distributes the nodes equally
on the free surface, which is useful only when the deformation of the free surface is not very large in one of the directions.
This constraint is imposed via a penalty formulation. More details and examples on the effect of w1, w2 are given in [13]. It is
noteworthy that for the quality of the constructed mesh, spacing of the nodes can be more important than orthogonality of
the coordinate lines. Finally, on the free surfaces, the kinematic condition, Eq. (13), is imposed on them, while the remaining
degree of freedom is controlled again by Eq. (27).

When accumulation of the coordinate lines towards certain boundaries is necessary, specific stretching functions are
introduced in the computational domain [49]. For example, when an increased concentration of mesh lines is required close
to the bottom of the computational domain at the boundary located at n = L the following expressions are used
Y ¼ g; X ¼ K
ðfþ 1Þ � ðf� 1Þ fþ1

f�1

� �1�ðn�LÞ
K

fþ1
f�1

� �1�ðn�LÞ
K þ 1

; ð28a;bÞ
where K is the length of the domain along the X-direction and f is a parameter that controls the density of the coordinate
lines and is chosen empirically, 1 < f <1. More specifically the closer to unity f is, the denser the coordinate lines are near
n = L.

The discretization of the computational domain is based on triangular elements after the splitting of each rectangular
element generated by the above procedure into two triangular ones in a way that will preserve the local symmetries. Tri-
angular elements are preferred because they conform better to large deformations of the physical domain and can sustain
larger distortions than the rectangular ones without making the Jacobian of the local transformation to the parent element
singular. Further details about the construction of the mesh and the boundary conditions will be discussed for each case
separately.

3.2. Local mesh refinement

To increase the local accuracy in regions of particular interest or in regions with sharp variations of the solution vector
such as those along the bubble surface or other highly deforming interfaces, the element refinement (h-) method has been
applied. The h-method has been suggested by Szabo and Babuska [50] who subdivided the elements on which the mea-
sure of the error was larger than a prescribed tolerance. Tsiveriotis and Brown [12], also applied it in a free boundary
problem by introducing a transition layer of non-conforming quadrilateral elements, and found that the local refinement
technique is essential in cases where elliptic grid generators are used because it relaxes the requirements on the mapping
equations and adds more flexibility to the handling of the three important characteristics of the grid mentioned above.

In Fig. 3, the four stages of mesh refinement methodology in two directions around a corner are illustrated. A coarse mesh,
initially tessellated in rectangular elements, is refined by adding nodes located in the centroid of each element and in the
middle of each element’s side. To accommodate the two regions with different number of elements, an intermediate zone
of triangular elements is created. In the final stage all the rectangular elements are split into two triangular ones as already
described. As we will demonstrate with specific examples this local refinement not only reduces the computational cost, but
also increases the accuracy of our calculations considerably. For retaining the bandwidth of the Jacobian matrix as small as
possible, the numbering of the nodes and consequently of the unknowns is based on a hierarchical method where nodes with
smaller n or g (depending on which direction we count first) values are accounted first.

3.3. Mixed finite element method

The velocity vector as well as the position vector of the nodes are approximated with 6-node Lagrangian basis functions,
/i, and the pressure, the stress tensor and the rate of strain tensor for the polymer as well as the velocity gradients are
approximated with 3-node Lagrangian basis functions, wi. The finite element/Galerkin method is employed, which after
applying the divergence theorem results into the following weak forms of the momentum balance:
Z

X
Re

@u
@t
þ u � ru

� �
/i þr/i � ð�PIþ Rþ 2 _cÞ

� �
dX�

Z
C
½n � ð�PIþ Rþ 2 _cÞ�/i dC ¼ 0; ð29aÞ
for the filament undergoing stretching and
Z
X

@u
@t
þ u � ru

� �
/i þr/i � ð�PIþ OhsÞ

� �
dX�

Z
C
½n � ð�PIþ OhsÞ�/i dC ¼ 0; ð29bÞ
for the bubbles in the acoustic pressure field, while the mass balance becomes
Z
X

wir � u dX ¼ 0; ð30Þ



Fig. 3. Stages of mesh refinement: (a) initial mesh with rectangular elements, (b) certain rectangular elements are split in four smaller ones, (c) insertion of
transition triangular elements and (d) each rectangular element is split in two triangular ones.
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where dX and dC are the differential volume and surface area, respectively. The surface integral that appears in the momen-
tum equation is split into as many parts as the boundaries of the physical domain and the relevant boundary condition is
applied therein. In order to avoid dealing with the second order derivatives that arise in the boundary integral of the inter-
face, through the definition of the mean curvature, H, we use the following equivalent form:
2Hn ¼ dt
ds
� n

R2
; ð31Þ
where the first term describes the change of the tangential vector t along the free surface, R2 is the second principal radius of
curvature, and n is the unit normal vector on the free surface.

The weak form of the mesh generating equations in general form is derived similarly by applying the divergence
theorem
Z
X

e1

ffiffiffiffiffiffiffiffiffiffi
FðgÞ
FðnÞ

s
þ ð1� e1Þ

 !
rg � r/i dXþ L

Z
C

@/i

@g
ffiffiffiffiffiffiffiffiffiffi
FðgÞ

p
dg ¼ 0; ð32Þ

Z
X
rn � r/i dX ¼ 0; ð33Þ
where F(g) and F(n) are given by Eq. (26), the penalty parameter is L ¼ Oð103—105Þ and the line integral is along the free
surface.

The weak form of Eq. (8) for the velocity gradient tensor is given by
Z
X
ðG�ruÞwi dX ¼ 0: ð34Þ
Finally, the constitutive equation is a hyperbolic equation for the elastic part of the stress tensor and is solved by the Stream-
line Upwind Petrov–Galerkin (SUPG) method [51]
Z
X

YðspÞRþ De R
}
þ2Deð1� bÞD

}
�2ð1� bÞð1� YðspÞÞD

� �
Wi dX ¼ 0; ð35Þ
where the weighting function Wi is formed from the finite element basis function for the elastic stress tensor according to
[52]
Wi ¼ wi þ Dtnþ1

2
u � rwi; ð36Þ
where Dtnþ1 is the current time step. The derivation of Eq. (35) is based on the characteristic Galerkin method [53] and guar-
antees that the upwind term in the modified basis function vanishes as Dt ? 0.
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3.4. Time integration and solution procedure

In order to integrate accurately the governing equations in time, the implicit Euler method, which is an A-stable approx-
imation, with time stepping adaptation, is used. This method has been suggested as a very efficient and robust alternative to
the more expensive finite element methods. More specifically, if by @j=@t ¼ f ðjÞ we denote the set of equations to be inte-
grated, its approximate form, using backward finite differences is
jnþ1 � jn

tnþ1 � tn
¼ f ðjnþ1Þ; ð37Þ
where the subscript n stands for the previous time instant and j is the entire unknown vector which includes velocities,
pressure, projected rate of strain and stresses. The difference tnþ1 � tn defines the current time step Dtnþ1. The strategy for
changing the time step is based on the estimation of the local truncation error, which is the difference between the accurate
approximation jn, and an explicitly predicted one j

p
n

jp
n ¼ jn�1 þ Dtn�1 _jn�1; ð38Þ

Dtnþ1 ¼ Dtn
e
kdnk

� �1=2

� Dte; ð39Þ
where e is a user defined tolerance, k � k stands for the Euclidean norm and dn ¼ jn � j
p
n is the difference between the pre-

dicted and the accurate solution at tn [54].
The resulting set of algebraic equations is solved by the modified Newton–Raphson iteration scheme. This method pro-

ceeds by not updating after each cycle the Jacobian matrix and its factorized form, unless a criterion of decreased conver-
gence rate is violated. Moreover, in the case of transient calculations a Picard iteration scheme is used for solving the set
of non-linear equations at each time step and simultaneously decreasing the memory requirements. The total set of equa-
tions is split in two sub-sets: the first one consists of the mass and momentum balances and the other one consists of the
mesh equations. These are solved independently from each other, using only the necessary information from the other sub-
problem. When the liquid exhibits viscoelastic behavior, then the extra stress unknowns are also solved separately according
to the following algorithm [55]:

For each time step, solve iteratively until convergence Problems 1–4:

� Problem 1: The mass and momentum balances for uiþ1
nþ1 and Piþ1

nþ1 keeping ðX;YÞinþ1, Gi
nþ1 and Ri

nþ1 fixed.
� Problem 2: The mesh equations for ðX;YÞiþ1

nþ1 keeping uiþ1
nþ1 Piþ1

nþ1, Gi
nþ1 and Ri

nþ1 fixed.
� Problem 3: The continuous approximation of the rate of strain tensor Giþ1

nþ1 keeping uiþ1
nþ1 and Piþ1

nþ1, ðX;YÞiþ1
nþ1, and Ri

nþ1 fixed.
� Problem 4: The viscoelastic constitutive equation for Riþ1

nþ1 keeping uiþ1
nþ1 and Piþ1

nþ1, ðX;YÞiþ1
nþ1 and Giþ1

nþ1 fixed.

This is an efficient method for decoupling the non-linear equations because it results in considerably smaller Jacobian
matrices, which are easier to handle. The convergence of the entire scheme is ensured by the automatic time adaptation,
because the predicted solution does not differ too much from the exact one and the Newton/Kantorovich sufficient con-
dition is satisfied [56]. In order to improve the effectiveness of the scheme and to avoid undesirable increases of the time
step, an upper bound is placed on the latter by the number of Picard iterations. So the new time step, Dtnþ1, is determined
by
Dtnþ1 ¼minðDtp;DteÞ; ð40Þ
where Dte is given from Eq. (39) and Dtp is given by
Dtp ¼ Dtn
desired number of Picard cycles
actual number of Picard cycles

� �1=4

:

Usually, the desired number of Picard iterations is equal to the actual ones at the first integration step increased by 3–4.
In addition, the Jacobian matrix of each sub-problem that results after the application of the Newton–Raphson solution

technique, is stored in Compressed Sparse Row (CSR) format and the linearized system is solved by using PARDISO, a robust
direct sparse matrix solver [57,58]. A Fortran 90 code was written for this purpose and was run on a workstation with dual
Xeon CPU at 2.8 GHz.

4. Generation of initial meshes

4.1. Cavities inside a filament undergoing stretching

Although the domain to be discretized contains inclusions because of the presence of the bubbles in the filament, the
assumption of axial symmetry makes it simply connected. Actually, the segments of the axis of symmetry connecting each
disk to one of the bubbles and the bubbles with each other play the role of branch-cuts in the corresponding 3D geometry.
Then as discussed in the introduction, each segment of the axis of symmetry can retain the same position, while each bubble



Fig. 4. Computational (n,g) domain of the bubbles in a filament problem. The bubble surfaces are mapped onto the thicker line segments.
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surface is mapped onto two different segments of the axis of symmetry in the computational domain. In particular, each bub-
ble surface is mapped onto segments with n = 0 and Zl

i 6 g 6 Zu
i , where Zl;u

i are the coordinates of the south (l) and north (u)
pole of the lower (i=1) or the upper (i=2) bubble. The resulting computational domain is shown in Fig. 4 to be confined be-
tween the initial filament surface, which is a perfect cylinder, n ¼ Rco and its axis of symmetry, n = 0. Clearly, this shape of the
computational domain is different from even the initial shape of the filament containing bubbles of a specific shape and size
and, hence, it is necessary to construct the corresponding initial mesh in the physical domain. To do so, we developed a con-
tinuation procedure in which the mesh equations, Eqs. (24) and (25), are solved together with the appropriate boundary con-
ditions. As boundary conditions, we impose the locations of all the boundaries of the liquid except for the surfaces of the
bubbles and the node distribution equations therein, which are generated by Eq. (27). On the boundaries corresponding
to the bubble surfaces we impose the following equations that define the two ellipsoids with the same poles as each bubble
Fig. 5.
additio
r2

b2 þ
ðz� zi;0Þ2

R2
bi;0

¼ 1; ð41Þ
where zi;0 is the initial axial position of the center of bubble i. Initially, the boundary is a straight line coinciding with the axis
of symmetry, but subsequently it takes the shape of an ellipsoid when the parameter b in Eq. (41) increases from zero and
finally becomes a hemisphere when b is equal to the initial radius of the i bubble, Rbi;0. These changes in the domain shape
and the discretizing mesh must be introduced gradually, so, we increase the value of the parameter b gradually from 0:01Rbi;0

to Rbi;0 by zeroth order continuation. When the transient problem is solved, Eq. (41) is replaced with the kinematic condition,
Initial mesh for the bubble-filament problem (a) using the equidistribution condition only at the boundaries of the mesh problem and (b) using
nal generalized distributions along the g-lines that begin from the poles of each bubble and reach the air–liquid interface, with w1 = 0.1 and w2 = 1.9.
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Eq. (13), written in cylindrical coordinates. A similar kinematic condition determines the time-dependent location of the out-
er filament surface.

The mesh that is generated in this manner is shown in Fig. 5(a). For clearer viewing, the mesh we show here is quite
coarse, but a much finer mesh was used in order to produce the results in this paper. We observe that the mesh is not accept-
able near the poles of the bubbles, where the repulsion of the mesh lines is clearly seen, as discussed in the introduction. An
easy remedy of this is to impose the generalized distributions, Eq. (27) along the g-lines, that begin from the poles of each
bubble and reach the air–liquid interface (Fig. 4). Since a higher concentration of nodes is needed in the regions closer to the
bubbles, along these lines we use w1 = 0.1 and w2 = 1.9 in Eq. (27). The mesh generated after the application of Eq. (27), is
shown in Fig. 5(b). It consists of more uniform elements all around the two bubbles. With the introduction of these ‘‘internal”
lines with preset node distributions, in essence, we introduce internal boundaries in the computational domain which some-
what resembles domain decomposition. Thus, we eliminate the need for adding attractive terms on corners or on the bubble
poles in these elliptic equations, something we have used elsewhere successfully [14]. When we introduced such attractive
terms on the bubble poles here, the resulting mesh was not as uniform as the one shown in Fig. 5(b). Additionally, the mesh
refinement technique described in Section 3.1 is used here due to the large mesh deformations expected in the region near
the bubbles and the filament-air free surface and the need to resolve them very accurately, especially because of the hyper-
bolic nature of the constitutive law. Typical meshes with and without local mesh refinement will be shown in the results
section.

4.2. Interacting bubbles in an acoustic field

Given the success and simplicity of the previous method in dealing with the bubbles included in the filament, it was first
attempted for this problem also to construct the mesh following a similar method. More specifically, given that here very far
from both bubbles the pressure and velocity fields have spherical symmetry, a spherical coordinate system is more appro-
priate. Also, it seems reasonable to position its center at the middle of the distance between the centers of the two bubbles.
The physical domain ðrs; hÞ (see Fig. 2) is mapped on the computational domain (n,g) (see Fig. 6), as follows: the first and
third segments, 0 6 n 6 nA1 and nA2 6 n 6 R1, of the line g = 0 (left boundary) correspond to the line segments OA1 and
A2A3 in the physical domain, while its second segment nA1 6 n 6 nA2 corresponds to the surface of the left bubble. Similarly,
the first and the third segments, 0 6 n 6 nB1 and nB2 6 n 6 R1, of the line at g = p (right boundary) correspond to the line
segments OB1 and B2B3, while its second segment nB1 6 n 6 nB2 corresponds to the surface of the right bubble, which is gen-
erally of different size. The line segments 0 6 g 6 p at n = 0 and at n = R1 correspond to the center of the coordinate system
and to the far-field boundary in physical space, respectively. In other words the four segments on the axis of symmetry cor-
responding to branch-cuts are mapped in pairs on opposite boundaries of the computational domain, while each bubble sur-
face is also mapped on the same opposite boundaries. The center of the coordinate system and the outer circular boundary
are mapped on the bottom and top boundaries, respectively, in the computational space. To avoid the repulsion of the mesh
lines by the bubble poles, the node locations on the lines of constant n emanating from both poles of each bubble are con-
trolled. As in the previous case, this choice of computational domain necessitates the construction of an initial physical do-
main (containing bubbles of the desired shape and size). This is achieved via the same continuation procedure in which the
mesh equations, Eqs. (24) and (25), written in spherical coordinates, are solved together with the boundary conditions which
Fig. 6. Computational (n,g) domain of the bubble–bubble interaction problem, when the center of the spherical coordinate system is positioned at the
middle of the distance between the centers of the two bubbles. The bubble surfaces are mapped onto the thicker line segments.



Fig. 7. Part of the initial mesh for the bubble–bubble interaction problem when the mapping of Fig. 6 is used.
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set the locations of all the boundaries of the liquid except for the surfaces of the bubbles and the node distribution equations
therein, which are generated by Eq. (27). On the bubble surfaces, a condition similar to Eq. (41) is imposed and meshes of
gradually increasing values of the parameter b are generated, until both bubbles attain a spherical shape. The resulting initial
mesh is shown in Fig. 7, after splitting each rectangle into two triangles in a way that preserves the local symmetries. This
mesh seems to be quite satisfactory up for short times only. Unfortunately, as the bubbles get distorted with time the com-
putations fail to converge. This is attributed to the asymmetry in discretizing the two poles of each bubble. This is observed
first by the increasing error in pressure at the poles of the bubbles, especially when the bubbles are relatively small and even-
tually leads to unacceptable errors.

In a second attempt to generate a mesh for accurate calculations, it was decided to remedy this problem by placing the
center of the coordinate system at the center of one of the two bubbles, e.g. the right bubble, see Fig. 8(a). Then, the surface of
this bubble would be described simply and exactly by these spherical coordinates and, hence, it would be symmetrically dis-
cretized. In order to improve the discretization of the left bubble also, we impose the node locations on the n-lines starting
from the poles of the left bubble at g = 0 all the way to g = p on which the generalized node distributions, Eq. (27), are im-
posed. Finally, the small asymmetry in the far-field boundary condition which is introduced by the presence of the second
bubble should not affect the solution since this boundary is not only located very far away from both bubbles but also the
open boundary condition is applied there. Hence and although the ‘‘branch-cuts” remain the same, the physical domain
ðrs; hÞ (Fig. 8(a)) is mapped onto a different computational one (n,g) (Fig. 8(b)). In particular, the surface of the right bubble
is mapped onto the entire bottom boundary 0 6 g 6 p at n ¼ RbB, and the left bubble onto the line segment n1 6 RbA 6 n2 at
g = 0, the left boundary. This is also a very promising arrangement out of a host of others. The locations n1 and n2 correspond
Fig. 8. Illustration of: (a) the coordinate system in physical space and (b) the computational domain of the bubble–bubble interaction problem, when the
center of the coordinate system is placed at the center of the right bubble. The bubble surfaces are mapped onto the thicker line segments.



Fig. 9. Part of the initial mesh near the bubbles for the bubble–bubble interaction problem when the mapping of Fig. 8 is used. For clarity we show
rectangular elements only.
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to the right and left poles, respectively, of the left bubble from where the n-lines emanate. In order to construct the two bub-
bles initially the equation of a circle with radius equal to the radius of the bubble is used directly for the right bubble, while
for the left bubble the continuation procedure and Eq. (41) in spherical coordinates is used as described before. The fixed
parts of the domain are imposed as boundary conditions, while the node distribution equations, Eq. (27), are imposed at
the line of symmetry (h = 0,h = p) and at rs ¼ R1. Fig. 9 depicts a close up of the initial mesh around the two spherical bubbles
with rectangular elements for reasons of clarity. This initial mesh seems satisfactory. However, drawing the pressure profile
around the surface of two equal bubbles at t = 10�4 and for Oh�1 = 20 and Ps ¼ 28, Fig. 10 we observe two things: (i) the pres-
sure in both bubble surfaces deviates from its expected value of �28, something we had noted with the previous mesh to
lead to failure of computations and (ii) this deviation is about two orders of magnitude larger in the left bubble the center
of mass of which does not coincide with the center of the coordinate system. Moreover, when the transient problem is solved
and the bubbles undergo large deformations, the mesh around the left bubble is highly distorted and several elements are
quite skewed. This leads to inaccuracies in the solution and to the breaking down of the computations after a while. On the
other hand, the mesh around the right bubble remains much less distorted and follows the bubble deformations nicely. An
example of the mesh around quite distorted bubbles of equal radius with Oh�1 = 6.5 and Ps ¼ 1000 is shown in Fig. 11.

All the above lead us to the conclusion that in order to obtain optimal results for this geometry, the mesh around the two
bubbles must be particularly fine, the elements must remain close to orthogonal and equilateral triangles and, more impor-
tantly, both bubble surfaces must be individually discretized, so that the error on their poles is decreased as much as pos-
sible. This naturally leads to the requirement that the physical domain (see Fig. 12) is decomposed into three subdomains:
(a) one part around each bubble described by a separate spherical coordinate system with a center that coincides with the
initial centroid of each bubble (parts A and B) and (b) a third part that will cover the rest of the domain with a center that
coincides with the middle of the segment connecting the initial bubble centroids (part C), see Fig. 12(a). All parts are con-
structed separately using the elliptic grid generation equations (Eqs. (14) and (15)) defined on local spherical coordinate sys-
tems. At the final stage, the three sub-domains are reunited to form the original one.

For constructing the meshes around the two bubbles (parts A and B), each physical sub-domain with local coordinates
ðrs; hÞ is mapped separately to a computational domain with (n,g) coordinates. For both subdomains, the two segments from
Fig. 10. Pressure variation along the moving surface of (a) the right bubble and (b) the left bubble for the mesh of Fig. 9, at t = 10�5, for RbB ¼ 1, Oh�1 = 20,
Ps ¼ 28, e = 1, D = 5 and R1 = 30.



Fig. 11. Deformation of the mesh near the bubbles at t = 0.3 when the mapping of Fig. 8 is used for RbB ¼ 1, Oh�1 = 6.5, Ps ¼ 1000, e = 1, D = 5 and R1 = 30.
For clarity we show rectangular elements only.
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the line of symmetry are mapped to the left and right boundary Rbi 6 n 6 Li, i = A, B with g = 0 or g = p corresponding to h = 0
or h = p, see Fig. 12(b) and (c). Each bubble surface is mapped to the bottom boundary 0 6 g 6 p with n ¼ Rbi (i = A, B) so that
the center of mass of each bubble coincides with the origin of the local coordinate system. The extent of the subdomain
around each bubble, which is also related to the initial distance between the two bubbles, is mapped to the top n ¼ Li, where
Li is the radius of the outer spherical boundary of the part i and we take LA ¼ LB always. Moreover, the location of the bound-
aries A4C2E1 and E1D2B4 in physical space is determined by two sets of equations: (a) up to a position that corresponds to the
local angle 0 6 h 6 3p=4 for part A and to the local angle p=4 6 h 6 p for part B we impose the equation of a circle with a
radius equal to the length Li of each part, (b) for the rest of each boundary, OE1, we impose the equation of a straight line, see
Fig. 12(a). The remaining degrees of freedom at all boundaries are used to distribute the nodes at equal distances, hence
w1 = w2 = 1, along these boundaries through Eq. (27) in a spherical coordinate system. Having constructed the mesh for parts
A and B the location of the boundaries A4C2E1 and E1D2B4 and the nodes on them are used as input data for the boundary
A4C2E1D2B4 of part C. More specifically, first we define the third physical domain, C, to be a spherical shell with center at
the middle of the distance between the centroids of the two bubbles, inner radius Lc ðLc ¼ OA4 ¼ OB4Þ and outer radius equal
to the radius where the far-field boundary condition is applied, R1. Then this physical domain is mapped to a computational
domain with (n,g) coordinates that is bounded by the left and right boundaries Lc 6 n 6 R1 at g = 0 or g = p corresponding to
line segments on the axis of symmetry, A4A3 and B4B3, respectively, while its inner and outer spherical surface correspond to
Fig. 12. (a) Schematic of the decomposition of the physical domain into three parts, and the mapping to a computational (n,g) domain of (b) part A, (c) part
B and (d) part C. The bubble surfaces are mapped onto the thicker line segments.
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0 6 g 6 p at n ¼ LC or at n = R1, see Fig. 12(d). Subsequently, the initial physical domain is constructed by the previously de-
scribed continuation procedure. In particular, here the inner spherical surface is pulled towards the A4C2E1 D2B4 boundary in
physical space. Simultaneously, the locations of the nodes, along the g = p/2-line that corresponds to the line E1E2 are relo-
cated according to
Fig. 13.
entire d
three-le
rsi � R1
ni � R1

¼ rs1 � R1
LC � R1

; i ¼ 1;2; . . . ;N; ð42Þ
where N is the total number of nodes along this g-line, rsi; ni are the coordinates of node i on it in physical and computational
space, respectively and rs1 is the radial coordinate of the first node on it that changes at each continuation step. For the de-
grees of freedom setting the locations of the nodes on all boundaries, Eq. (27) with w1 = w2 = 1 is used. Moreover, for each
computational domain Eq. (28) is used as needed for concentrating the coordinate lines along the corresponding inner
boundary n ¼ RbA;RbB, or Lc , with an appropriate value of f: usually 1:05 6 f 6 1:2. After the construction of the three indi-
vidual domains, we construct the entire mesh by merging all three domains. This is also used as an initial state for the tran-
sient problem.

The discretization of the entire physical domain is presented in Fig. 13(a), while a magnified view close to the bubbles is
presented in Fig. 13(b). Clearly, the mesh nodes are evenly distributed around both bubbles. Despite this fine discretization,
it was soon realized that an even finer mesh is required close to the bubble surfaces, in order to compute the eigenvalues of
bubble shape deformation to at least three significant digits. This highly sensitive computation is accomplished accurately
without unnecessarily increasing the mesh where this is not needed, i.e. away from the bubbles, by following the mesh
refinement technique described in Section 3.1. In Fig. 13(c) a magnified view of the mesh in the vicinity of the two bubbles
is given. Three refinement levels are used for higher local resolution of the flow. Details of the mesh around the pole of the
right bubble are presented in Fig. 13(d) and verify the capability of the proposed method to generate nearly optimal grids. In
Fig. 14(a) and (b) we present two unequal bubbles after they have undergone several volume oscillations and have translated
towards each other, while in Fig. 15 we present only the right of two equal interacting bubbles. In both cases the liquid is
taken to be water and the dimensionless parameters change in response to changes in the size of the bubbles. The combined
volume and shape oscillation with bubble translation has resulted in large deformation especially of the right bubble in
Typical initial mesh for the bubble–bubble interaction problem (a) the entire domain, (b) a region around the bubbles with uniform mesh for the
omain, (c) a region around the bubbles with a three-level refinement around each bubble and (d) a region around the pole of the right bubble with
vel refinement. In figures (a) and (b) only rectangular elements are shown for clarity.



Fig. 14. Deformation of the mesh when the mapping of Fig. 12 is used. (a) a region around both bubbles, (b) a magnification around the right bubble at
t = 0.39 for RbB ¼ 0:5, Oh�1 = 85, Ps ¼ 137, e = 1, D = 3 and R1 = 30.
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Fig. 14 and of both bubbles in the second case (Fig. 15). In fact in the case of Fig. 15, where the inverse Ohnesorge number is
large, the bubbles become highly deformed and we are able to capture accurately a very fast moving jet that emanates from
the bubble side which is away from the other bubble. Eventually this will pierce the bubble and will cause its collapse, a well
known phenomenon. The dynamically adjusting mesh follows very nicely the jet and the swelling that appears in its head
along with every other detail on the bubble surface. It is quite challenging to capture this interface with multiple folds of
varying amplitude, even if it appeared in a single bubble. This example clearly shows the advantages of splitting the domain
into subdomains which closely follow the local interfaces and the quasi-elliptic method for generating the mesh. Character-
istics of the specific meshes will be described in the next section.

There are several advantages of the above methodology for generating a mesh. More specifically, (i) the grid is struc-
tured with mesh lines remaining nearly orthogonal to the highly deforming boundaries which is essential to very accu-
rately resolving the boundary conditions on these boundaries even at high values of fluid inertia or fluid elasticity; (ii)
the grid is structured not only around the above regions where the solution exhibits rapid variation, but also in the entire
domain, when it is well known that structured grids have better properties related with error distribution and propagation
compared to unstructured ones [59,60]; and (iii) during the transient simulations resulting in large domain deformations
grid restructuring is not needed at all and variable interpolations are not required or kept to a minimum. All these benefits
are essential in the case of a moving boundary problem because of the hyperbolic character of the kinematic condition, not
to mention the hyperbolic character of the viscoelastic constitutive law. For this reason, a moving boundary problem is
susceptible to artificial short wave instabilities, unless an optimal discretization technique is adopted. Therefore, using
in this case a local orthogonal spherical coordinate system around each bubble, we can decrease the local errors and per-
form simulations for long times. The implementation is simple, and its specific steps for creating the initial mesh are de-
scribed above. Subsequently, in order to perform the transient calculations we just replace the essential conditions on the
moving boundaries (rs ¼ RbA & rs ¼ RbBÞ, with the kinematic ones (Eq. (13)) and follow the solution algorithm described in
Section 3.2.



Fig. 15. Deformation of the mesh when the mapping of Fig. 12 is used. The mesh is magnified around the right bubble and the left and right pole of the
bubble at t = 0.651 for RbB ¼ 1, Oh�1 = 270, Ps ¼ 1375:51, e = 0.3, D = 9.9 and R1 = 30.
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It must be mentioned that our numerical experimentation showed that for the solution of the flow problem a global coor-
dinate system can be safely used without introducing any numerical instability. This is also very convenient from a program-
ming point of view, since no extra geometric transformations are necessary.

5. Numerical examples

5.1. Cavities inside a filament undergoing stretching

For simplicity, we assume that the two spherical bubbles are of equal radius ðRb1 ¼ Rb2 ¼ 1Þ, with their centers located
symmetrically with respect to the middle plane of the filament at distances h1 = 2 and h2 = 7 from the lower disk, respec-
tively. The ratio of the initial filament height to the bubble radius is Ho ¼ 9, while the initial aspect ratio of the filament
is K ¼ Ho=Rco ¼ 2:25. The liquid that surrounds the two bubbles is viscoelastic with De = 1, ePTT ¼ 0:03 and b = 0.01. Since
PSAs are materials with very high dynamic viscosities (close to 107 Pa s), the resulting Reynolds number is practically zero.

The meshes used to discretize the liquid domain are constructed as discussed in Section 4.1 and are denoted by U or M,
indicating either a uniform or a locally refined mesh, respectively. For example mesh U1 consists of 960 triangular elements
with 21 nodes around each bubble surface. More details about all the meshes that are used for this problem are given in
Table 1. In Fig. 16 we show three snapshots of the filament and the bubbles inside it at times t = 0, t = 5 and t = 11.5. The
bubbles remain symmetric with respect to the mid-plane of the filament at all times. The mesh U1 is depicted here. Although
this mesh is satisfactory for the relatively small initial deformations of the filament, at longer times and larger deformations
non-physical angles appear at the surfaces of the bubbles and particularly at their poles closer to each disk. Clearly, more
nodes are needed in order to describe accurately the highly deforming bubble surfaces. However, despite the coarse discret-



Table 1
Characteristics of the meshes used in the filament stretching problem. Triple local refinement has been performed for the M family of meshes around the
bubble surface at the locations: n ¼ Rc0=20;Rc0=10;Rc0=5 and single local refinement has been performed along the filament free surface in the range:
0:9Rc0 6 n 6 Rc0.

Mesh Number of radial
elements before
refinement

Number of axial
elements before
refinement

Number of
triangles after
refinement
(if used)

Number of nodes on free
surface after refinement

Dr around the free
surface after
refinement

Dz around the free
surface after
refinement

U1 10 48 960 21 0.2 0.314
U2 80 84 61440 161 0.025 0.04
M1 10 48 5664 161 0.025 0.04
M2 14 64 10752 225 0.018 0.028
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ization, no remeshing techniques are required and even larger deformations of the domain boundaries can be followed. In
order to increase the accuracy of the computations, one option is to increase the number of triangular elements throughout
the domain to, for example, 61,440 and the number of nodes along each bubble surface to 161. This is mesh U2. Now the
surfaces of the bubbles are captured very satisfactorily even after they are highly deformed, but the computational time in-
creases to prohibitive levels. More specifically using 960 triangular elements the simulation requires almost 5 h in order to
reach the same final time of t = 11.5, while using 61,440 elements the simulation takes almost 10 days. In order to reduce the
memory requirements and simultaneously the computational time, while keeping the same accuracy in the calculations, we
applied the local refinement technique described in Section 3.1. Here the local refinement was performed in one direction
only, the radial one, resulting in unnecessarily finer mesh all along the axis of symmetry. Also three grading levels were
introduced around the axis of symmetry and each bubble surface and a single grading level along the liquid–surrounding
air interface. The number of the nodes along each bubble surface is retained at 161. However, the total number of the tri-
angular elements decreases significantly from that in mesh U2 to 5664 (mesh M1). The resulting decrease in the CPU time
is impressive, since the simulation in this case takes almost 12 h to reach the same final time. If the local refinement was
performed in both the radial and the axial directions around the bubbles surfaces only, the reduction in both memory
requirements and computation time would have been even larger. In Fig. 17 we show snapshots of mesh M1 at times
t = 0, t = 5 and t = 11.5, while in Fig. 18 we show a magnified view around the top and the bottom of the upper bubble at
Fig. 16. Deformations of the mesh U1 with a uniform tessellation of 10 	 48 one-dimensional elements in the radial and axial direction, respectively, at
times (a) t = 0.0, (b) t = 5.0 and (c) t = 11.5. The dimensionless parameters are De = 1, Re = 0, Ca = 10, ePTT ¼ 0:03, b = 0.01, K = 2.25, H0 = 9, Rb1 ¼ Rb2 ¼ 1,
h1 = 2 and h2 = 7.



Fig. 17. Deformation of the mesh M1 for the flow and geometric parameters and times of Fig. 15 with triple local refinement around the bubble surfaces,
n 6 Rc;o=20, Rc;o=10, Rc;o=5, and single along the liquid one, 0:9Rc;o 6 n 6 Rc;o.
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two different times, t = 5 and t = 11.5, for the same mesh, M1. From these figures we can clearly observe that the mesh re-
mains very uniform around the bubble and that its skewness is reasonably restricted. In an even closer view around the bot-
tom of the upper bubble (Fig. 18(c3)), one can observe the inception of a cusp at the bubble pole. This is similar to the well
documented inverted teardrop shape that a bubble assumes when it rises in a viscoelastic liquid [61].

Fig. 19 shows the evolution of the pressure, P, and components of the stress tensor, sp, with time at the points on the
bubble surface that are most critical for determining the accuracy of the calculations, i.e. the poles and the equatorial
plane of the bubble, for four different meshes: U1, U2, M1 and M2. The model parameters are those already mentioned
before. The results are given for one of the two bubbles, the upper one, because of the symmetry of the problem.
Fig. 19(a) shows the pressure, P, and the stress tensors, shh;p, srz;p and szz;p at the north pole of this bubble. We can see that
convergence of the results depends critically on the discretization on the free surface. Indeed meshes U2 and M1, where
the discretization of the free surface is exactly the same, give identical and converged results, while using the finer mesh
M2 does not offer higher accuracy at least in the scale shown in these figures, although computing with this mesh is more
expensive. This means that using either a coarser mesh than M1 away from the bubbles, or a finer mesh than M1 on the
bubbles surfaces does not affect the solution. In contrast, when the coarsest uniform mesh U1 is used, the solution shows
a continuously increasing deviation from the solutions obtained with the other three meshes. Similar is the conclusion by
examining the evolution of the solution for the pressure P and the stress components szz;p, srz;p and srr;p, at the south pole of
the bubble (Fig. 19(b)). While the results for the denser meshes (M1, M2 and U2) are in very good agreement, except close
to the end of the calculations, the solution for the coarser mesh U1 differs from early on. The elements on the free surface
of this mesh, given in Fig. 16, are not enough to accurately describe its large deformations at longer times. In other words,
at short times where no significant deformation of the bubble occurs, the solution with mesh U1 is in agreement with the
solutions with the finer meshes. As time increases and the deformations become significant, the solution with this mesh
deviates and when the bubble forms a cusp at the south pole only the finest mesh on its surface remains accurate. In con-
trast with the upper and the lower pole of the bubble, the solution at the equatorial plane (Fig. 19(c)) seems not to be
affected by the mesh as much. Indeed, the deformations at the equatorial plane are smoother and even the coarsest mesh
is sufficient to describe accurately the free surface there.

Fig. 20 presents contour plots of the velocities, the pressure and the stress components at t = 5.0, obtained with mesh M1.
We observe that all the contour lines are smooth and no ‘wiggles’ appear anywhere. We can also observe that all profiles are
symmetric with respect to the instantaneous mid-plane of the filament, except of course for the velocity Uz. This velocity
component takes its highest values at the upper disk, which is the one that causes the entire motion and deformation, while
it takes zero values at the lower disk which remains motionless.



Fig. 18. Details of the mesh of Fig. 17(b) (b1, b2) and Fig. 16(c) (c1, c2, c3), around the top and the bottom of the upper bubble in the left and the right part of
the figure, respectively.
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5.2. Interacting bubbles in an infinite domain

Having generated the entire mesh by uniting the three parts of the domain, it is easier to use cylindrical coordinates to
write the governing equations in each node. In this way, the following two tests have been performed.

5.2.1. Calculation of the eigenvalues of the system
Perhaps the most demanding and strict test to determine the accuracy of the simulations for this problem is to examine

the convergence with mesh refinement of the eigenvalues of the corresponding free boundary problem. This is readily
achieved by assuming that initially no flow exists and the bubbles are spherical due to capillarity and, then, subjecting all
the flow variables including the bubble shapes to an infinitesimal disturbance. In addition to convergence with mesh refine-
ment, we can compare our predictions with the analytically obtained eigenvalues for an isolated bubble surrounded by a
viscous liquid, which have been reported by Miller and Scriven [62]. To this end, we only need to position the two bubbles
as far apart as allowed by our current hardware/software configuration.

More specifically, the normal modes of the system are computed by assuming that all variables are split into their base
values and a small disturbance.
uðr; z; h; tÞ
Pðr; z; h; tÞ
Pgiðr; z; h; tÞ
xðr; z; h; tÞ

2
6664

3
7775 ¼

ubðr; zÞ
Pbðr; zÞ
Pgibðr; zÞ
xbðr; zÞ

2
6664

3
7775þ d

upðr; zÞ
Ppðr; zÞ
Pgipðr; zÞ
xpðr; zÞ

2
6664

3
7775ect ; ð43Þ
where the new subscripts b and p indicate the equilibrium (base) state and the perturbed one, respectively, d
 1 is the
amplitude of the infinitesimal disturbance and x denotes the position vector of the mesh nodes. As noted in Carvalho and
Scriven [23], by invoking the domain perturbation approach only the positions of nodes on the free surfaces need to be per-
turbed as part of the overall disturbance. This is achieved by setting the domain perturbation to



Fig. 19. Evolution with time of (a) P, shh;p , srz;p , szz;p for the upper pole of the upper bubble, (b) P, szz;p , srz;p , srr;p of the lower pole of the upper bubble and (c)
uz , ur , srr;p , srz;p of a point near the equatorial plane of the upper bubble for the indicated meshes. The dimensionless parameters are those in Fig. 16.
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xp ¼ Hð0ÞðxbÞh0n; ð44Þ
where n is the unit normal to the unperturbed boundary, h0 is a scalar function related to the amplitude of the perturbation
for the mesh nodes and H(0) is the Heaviside function
Hð0ÞðxbÞ ¼
1; xb 2 C

0; xb 2 X

	
: ð45Þ
Thus Hð0ÞðxbÞ vanishes inside the unperturbed liquid domain, whereas it is equal to one on its boundaries, allowing only the
nodes at the moving boundary to be displaced as determined by h0.

Substituting expressions (43) into the governing equations, including the kinematic Eq. (13) and the equation of state that
describes the pressure inside the bubble (11), and neglecting terms of order higher than linear in the perturbation parameter,
d, we obtain a generalized eigenvalue problem of the form
JY ¼ cMY; ð46Þ
where J is the Jacobian matrix, M is the mass matrix, c are the eigenvalues and Y the corresponding eigenvectors. In order to
solve the eigenvalue problem, we used the Arnoldi method as it is implemented in the Arpack library [63]. This method is
capable of iteratively computing a relatively small fraction of the entire spectrum of eigenvalues and in particular those that
have the largest magnitude. Since we are interested in enhancing convergence to a specific portion of the spectrum and in
order to limit the fraction of the eigenvalues to be computed each time, we used the shift-and-invert transformation
ðJ� kMÞ�1MY ¼ mY; where m ¼ 1
c � k

: ð47Þ
This transformation is efficient because not only it turns the generalized eigenvalue problem into a simple one but also it
computes the eigenvalues that are closer to the user-provided complex number k, since the eigenvalues m of Eq. (47) that



Fig. 19 (continued)
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are largest in magnitude correspond to the eigenvalues c of the original problem that are nearest to the shift constant k in
absolute value. The accuracy of the converged eigenpairs is checked independently by evaluating a posteriori the residual
jJYn � cMYnj.

The computed eigenvalues are compared with those that arise from the analytical solution of Miller and Scriven [62] for
individual bubbles which gives the eigenvalues c by the implicit expression
c�2

c2 ¼
lþ 2
x�2o

ð2lþ 1Þx�2o R�2bi � 2ðl� 1Þðlþ 1Þð2lþ 1�x�oR�biQ
H
lþ1

2
Þ

2lþ 1�x�oR�biQ
H
lþ1

2
þx�2o R�2bi =2

2
4

3
5� 1; i ¼ A;B; l ¼ 2;3; . . . ; ð48Þ
where x�o ¼ ðc�q�=l�s Þ
1=2 and c� ¼ r�ðlþ1Þðl�1Þðlþ2Þ

R�3bi q
�

� �1=2

is the frequency of oscillation, if the liquid is assumed to be inviscid and

the gas in the bubble does not contribute to the dynamics of the problem, as we have already assumed. In these expressions, l
corresponds to the index of the Legendre polynomial characterizing the shape of the bubble. The analytical solution does not
apply for volume oscillations of the bubble (l = 0) or bubble translation (l = 1). The real part, cR, of c is the amplification or

decay factor, the imaginary part, cI , is the angular frequency and QH
lþ1

2
�

Hð1Þ
lþ3

2

ðx�oR�biÞ

Hð1Þ
lþ1

2

ðx�oR�biÞ
; Hð1Þ

lþ1
2
, Hð1Þ

lþ3
2

are the half-integral-order Hankel

functions of first kind. The oscillation frequency and decay factor are obtained numerically assuming the value of the Ohne-
sorge number and properties of water at 25 �C and atmospheric pressure by solving Eq. (48) using standard software.

The eigenvalue problem required 12–24 h to complete, depending on the flow parameters, before the local refinement
technique was introduced, while it required only 1/2–1 h following this procedure. In addition, the maximum number of
nodes that could be used before the local refinement with our current hardware, was up to 150 along each bubble surface
due to the high computational cost, and the requirement of a gradual coarsening of the mesh away from the bubbles result-
ing in a total of 36,720 triangles. On the contrary up to 2250 nodes along each free surface can be used after the local refine-
ment increasing the accuracy of our computations, as discussed below. Table 2 presents the characteristics of the meshes
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2004 N. Chatzidai et al. / Journal of Computational Physics 228 (2009) 1980–2011
that we used. Only in the M family of meshes three levels of local refinement have been introduced near the bubble surfaces
as detailed in the table. Special care has been paid so that the aspect ratio of the elements near the bubbles does not deviate a
lot from unity. This can be seen in the minimum values of their sides in the r- and z-directions (in a cylindrical coordinate
system). The reduction of both these values near the bubbles through local mesh refinement is noteworthy.

Table 3 summarizes the computed eigenvalues for bubbles of equal size, RbB ¼ 1, at a relatively large distance between
their centers D = 17, when the far-field boundary is taken at R1 = 30. We have verified that neither one of the two latter
parameter values affect the computed eigenvalues by increasing the distance to D = 24 and the boundary location to
R1 = 45. Results with one relatively uniform mesh, U3, and three meshes with local refinement, M3–M5, are given, for var-
ious values of Oh�1, which plays the role of a Reynolds number for this problem. In the same table the semi-analytically cal-
culated eigenvalues using Eq. (48) for individual bubbles are also given. Clearly the very expensive calculations with the U3
mesh result in the least accurate values, whereas even the coarsest of the M family of meshes, M3, results in values closer to
the semi-analytical ones for all values of Oh�1 numbers and all modes. Increasing the nodes on the free surface, the numer-
ically computed eigenvalues tend monotonically to the semi-analytical ones. Even the higher eigenmodes, that involve larger
contributions from higher Legendre polynomials and larger interfacial deformations, which should have been computed less
accurately, are in very good agreement with the theoretical eigenvalues. On the other hand, the higher the Oh�1 number is,
the lower the accuracy of the computed eigenvalues. This should have been anticipated since increasing Oh�1, increases the
inertial over the viscous forces producing a sharper boundary layer around each bubble, which requires an even finer mesh
to capture accurately the eigensolution. We also performed tests for the aspect ratio of the elements around the free surfaces.
It is found that when all the elements around the free surface have the same or quite the same aspect ratio higher accuracy is
achieved. This remark may explain the variation between eigenvalues resulting from the analytical expression and numer-
ically computed ones. In our mesh the aspect ratio of the elements located between the two bubbles is smaller than unity
whereas those located at their other poles are larger than unity.

Fig. 21 shows the relative error of each numerically computed eigenvalue with respect to each analytical counterpart in
logarithmic scales. Clearly for all modes, there is a linear decrease of the error as the number of surface elements increase. On



Fig. 20. Contours of (a) ur , (b) uz , (c) P, (d) srr;p , (e) srz;p , (f) szz;p and (g) shh;p at t = 5.0 for the dimensionless parameters of Fig. 12.
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the contrary, the error does not depend in such a simple manner on the number of total nodes or elements, verifying that the
number of surface elements is the most crucial factor for this computation. It is noteworthy that in all cases we have com-
puted the inner product of the eigenvector for the modes l = 2, 3, 4 and 5 with Legendre polynomials of various degrees and
found that each eigenvector contained only the Legendre polynomial of degree 2, 3, 4 and 5, correspondingly, testifying once
more to the accuracy of the present calculations.

5.2.2. Transient simulations
Fig. 22, presents snapshots of the mesh around the bubbles at three different times: (a) t = 0.28, (b) t = 0.4 and (c) t = 0.66,

and for two different meshes. At the left column of snapshots in Fig. 21 the mesh is finer near the bubble surfaces and be-
comes coarser slowly away from them (mesh U4 in Table 2). The total number of triangular elements is 25,632, which cor-
responds to 220,163 unknowns, while the number of nodes along each bubble surface is only 145. At the right column of
snapshots in Fig. 22 the mesh in addition contains a three-level refinement around the bubbles (mesh M6 in Table 2).
The total number of triangular elements is smaller 9792 which corresponds to less 85,991 unknowns, whereas the number
of nodes along each bubble interface is much higher 385. The two bubbles are equal, Rb2 ¼ 1, their dimensionless initial dis-
tance is set to D = 2.8, which allows us to use a generally less refined mesh compared to that in the eigenvalue computations,
and the outer boundary is R1 = 30. Moreover, the dimensionless static pressure, Ps, is equal to 100. As initial disturbance, a
step change in pressure at the far-field is applied, with e = 1 increasing the far-field pressure by a factor of 2. The two bubbles
undergo volume oscillations and simultaneously approach each other with time, as expected, since they oscillate in phase
and attractive forces develop [36,37,41]. From Fig. 22 we can see that when local refinement is used, the mesh remains dense
around the two bubbles until the end of the simulations. On the other hand when no local refinement is used and as time
passes, the elements are deformed near the poles of the bubbles, with quite large (quite small) aspect ratios between the two
bubbles (in the other direction). If the simulations were allowed to continue further, remeshing would have been required.



Table 2
Characteristics of the meshes used for the bubbles in an acoustic field problem. Local refinement has been used for the M family of meshes only. In meshes M3–
M5 a three-level local refinement has been used around each bubble surface at the following distances in the computational domain: Rbi 6 n 6 1:008Rbi ,
1:008Rbi 6 n 6 1:026Rbi , 1:026Rbi 6 n 6 1:036Rbi , while in meshes M6–M7 the three levels of refinement were introduced at: Rbi 6 n 6 1:014Rbi ,
1:014Rbi 6 n 6 1:029Rbi , 1:029Rbi 6 n 6 1:039Rbi .

Mesh Part A or B (radial,
azimouthal) elements
before refinement

Part C (radial,
azimouthal) elements
before refinement

Number of
triangles after
refinement
(if used)

Number of nodes on
free surface after
refinement

Drmin around the
free surface after
refinement

Dzmin around the
free surface after
refinement

U3 (120,72) (10,108) 36,720 145 0.044 0.004
M3 (37,40) (10,60) 15,360 641 0.01 0.002
M4 (37,80) (10,120) 30,720 1281 0.005 0.002
M5 (37,140) (10,210) 53,760 2241 0.003 0.002
U4 (14,72) (100,108) 25,632 145 0.044 0.063
M6 (16,24) (50,36) 9792 385 0.016 0.004
M7 (16,40) (50,60) 16,320 641 0.010 0.004

Table 3
Comparison of eigenvalues derived either semi-analytically [62] or numerically with the indicated meshes, for an isolated bubble at various Oh�1 numbers
(D = 17, R1 = 30).

l Miller and Scriven M3 M4 M5 U3

Oh�1ð¼ ReÞ ¼ 5
2 1.5252 ± 1.9697i 1.5344 ± 1.9918i 1.5298 ± 1.9807i 1.5278 ± 1.9760i 1.5648 ± 2.0674i
3 2.7030 ± 3.7877i 2.7092 ± 3.8040i 2.7061 ± 3.7958i 2.7047 ± 3.7923i 2.7301 ± 3.8599i
4 4.0400 ± 5.6620i 4.0452 ± 5.6754i 4.0426 ± 5.6687i 4.0415 ± 5.6658i 4.0625 ± 5.7214i
5 5.5513 ± 7.6212i 5.5560 ± 7.6326i 5.5536 ± 7.6270i 5.5526 ± 7.6245i 5.5712 ± 7.6723i

Oh�1ð¼ ReÞ ¼ 20
2 0.7252 ± 3.2205i 0.7288 ± 3.3094i 0.7270 ± 3.2652i 0.7262 ± 3.2461i 0.7389 ± 3.5996i
3 1.2677 ± 5.8998i 1.2704 ± 5.9661i 1.2690 ± 5.9330i 1.2685 ± 5.9188i 1.2786 ± 6.1887i
4 1.9367 ± 8.8197i 1.9392 ± 8.8755i 1.9379 ± 8.8476i 1.9374 ± 8.8356i 1.9468 ± 9.0642i
5 2.7302 ± 11.9906i 2.7328 ± 12.0400i 2.7314 ± 12.0153i 2.7308 ± 12.0047i 2.7401 ± 12.2070i

Oh�1ð¼ ReÞ ¼ 40
2 0.4041 ± 3.3754i 0.4074 ± 3.6618i 0.4061 ± 3.5214i 0.4053 ± 3.4596i 0.4145 ± 4.5098i
3 0.7074 ± 6.1694i 0.7102 ± 6.3867i 0.7088 ± 6.2789i 0.7082 ± 6.2322i 0.7173 ± 7.0828i
4 1.0857 ± 9.2425i 1.0885 ± 9.4262i 1.0870 ± 9.3347i 1.0864 ± 9.2953i 1.0957 ± 10.0309i
5 1.5384 ± 12.6049i 1.5414 ± 12.7676i 1.5398 ± 12.6864i 1.5392 ± 12.6515i 1.5487 ± 13.3088i
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One way to examine closer the accuracy of the present dynamic computations, it is to decompose the bubble surface into
Legendre modes. These are computed with respect to a spherical coordinate system with its origin located at the instanta-
neous center of mass of each bubble. The Legendre coefficients of each mode are computed as follows:
Fig. 21
Oh�1 =
Cil ¼
Z p

0
FsiðhÞPlðhÞ sinðhÞdh; i ¼ A;B; l ¼ 0;1;2;3 . . . ; ð49Þ
. Relative error of each numerically computed eigenvalue with respect to its semi-analytical counterpart for meshes U3, M3, M4 and M5 and for
20.
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where Fsi is position of the interface of the i bubble. Then, it may be seen that the dominant modes for this case are
those that correspond to the Legendre polynomials of degree zero and two. Fig. 23 shows the time evolution of the coef-
ficient, C0 (Fig. 23(a)), of the zeroth degree Legendre polynomial, P0, that is associated with volume oscillations, and the
coefficient, C2 (Fig. 23(b)), of the second degree Legendre polynomial, P2, for the same parameters that we mentioned
earlier. Positive values of the coefficient C2 correspond to prolate bubble shapes (elongated along the axis of symmetry)
whereas negative values to oblate bubble shapes (flattened at the bubble poles). Hence the bubble initially oscillates
retaining a prolate shape, whereas at later times it attains both prolate and oblate shapes and finally only oblate shapes,
since then the bubbles have approached and flattened each other considerably. These coefficients are compared for three
different meshes, U4, M6 and M7; where U4 stands for a slowly graded mesh (without local refinement), while in
meshes M6 and M7, three levels of refinement are used around the bubble surfaces. As can be seen in Fig. 23, both coef-
ficients calculated with the U4 mesh deviate with time from those calculated with the other two meshes indicating that
a very fine mesh around the bubble surfaces is indeed required in order to solve accurately this problem for longer
times.

In Table 4, we give the relative error in pressure, the most sensitive of the variables computed in Newtonian fluids, at
three positions on the surface of the left bubble (near its two poles and its equatorial plane) for meshes U4 and M6 with
respect to the values obtained with mesh M7, at three different times. As previously, the finer the mesh around the two
bubbles is the more accurate the calculated pressure is. More precisely, the relative error in pressure for the mesh U3 at
t = 0.28 is � 1.3% and increases up to �8.5% at t = 0.66 when the bubble has deformed appreciably. On the contrary, the
relative error for the mesh M6 starts with �0.1% at t = 0.28 and does not exceed �0.8% at the end of the simulations. In
addition to the larger error, the smoothly varying mesh here has a larger number of elements distributed throughout the
domain around the bubbles, which necessitates fewer elements adjacent to the free surfaces in order to keep the com-
putational cost at a reasonable level. This is exactly what the local mesh refinement achieves, more elements on the
highly deforming, free surfaces, where they are needed the most for higher accuracy in the calculations, and fewer ele-
ments away from them to the point that the total number of elements is smaller. The required computation times on a
single node of our quad xeon machine are almost 2 weeks using the U4 mesh as opposed to 2 and 6 days for the M6 and
M7 meshes, respectively.
Fig. 22. Snapshots of the mesh around the two bubbles when the uniform mesh, U4, is used (left column) and when the three-level refinement mesh, M6, is
used (right column) at (a) t = 0.28, (b) t = 0.4 and (c) t = 0.66. Dimensionless parameters are RbB ¼ 1, Oh�1 = 10, Ps ¼ 100, e = 1, D = 2.8 and R1 = 30. For mesh
U4 only rectangular elements are shown.



Fig. 23. Time evolution of the coefficients of the Legendre modes (a) P0 and (b) P2 for the decomposition of the left bubble interface, for three different
meshes, U4, M6 and M7. Dimensionless parameters are those of Fig. 22.
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Fig. 24 presents contour plots of both velocity components and the pressure at t = 0.66. The results are given in spherical
coordinates with center located at the middle of the distance between the initial centroids of the two bubbles. The mesh used
is M7 and no remeshing is needed until the end of the simulation. The radial velocity, Fig. 24(a) (upper half), takes the high-
est and positive values between the two bubbles, while it takes negative values at the rear side of the bubbles. This velocity
distribution indicates that the bubbles are contracting and approaching each other at this time instant, squeezing fluid away
from the gap between them. If Stokes flow prevailed, the radial velocity should drop like �r�1 away from the bubbles. In the
upper half of Fig. 24(a) we can see that it decreases with the radial distance, but does not exactly follow this rule, since the
inverse Ohnesorge number is not small. The azimouthal velocity field, Fig. 24(a) (lower half), is symmetric with respect to
h = p/2, because the two bubbles are equal and undergo in-phase oscillations. In agreement with the picture about the radial
velocity, the azimouthal velocity takes negative values around the left bubble and positive values around the right bubble
around their equators, but changes sign at their poles facing away from each bubble. It also takes zero values at h = 0,
h = p and h = p/2, as it should. Finally the pressure field, Fig. 24(b), attains radial symmetry not too far from the bubbles, ver-
ifying again that our choice to locate the outer boundary at R1 = 30 is a conservative one for this configuration. As can be
seen in Fig. 24 the main changes in the velocity and pressure fields occur around and close to the two bubbles, explaining
once more the need for a very fine mesh in that region and not in the area away from them.
Table 4
Relative error of the pressure at three different positions (around the poles and the equatorial plane) on the free surface of the left bubble at three different

times: error ¼ Pjz;mesh�Pjz;M7
Pjz;M7




 


.
Mesh z error (%)

t = 0.28
U3 �2.0 1.31
M6 �2.0 0.15
U3 �1.2 1.32
M6 �1.2 0.15
U3 �0.4 1.29
M6 �0.4 0.16

t = 0.4
U3 �2.0 4.72
M6 �2.0 0.23
U3 �1.2 4.82
M6 �1.2 0.25
U3 �0.4 4.84
M6 �0.4 0.25

t = 0.66
Mesh z error (%)
U3 �1.4 8.41
M6 �1.4 0.72
U3 �0.8 8.34
M6 �0.8 0.72
U3 �0.2 8.48
M6 �0.2 0.72



Fig. 24. Contours of (a) urs (upper half), uh (lower half) and (b) P at t = 0.66 for the dimensionless parameters of Fig. 22.
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6. Conclusions

The elliptic grid generator scheme proposed by Dimakopoulos and Tsamopoulos [13] has been successfully extended to
problems where domains with inclusions are involved, the interfaces undergo large deformations and hyperbolic equa-
tions must be solved. Depending on the geometry, it has been found that the entire fluid domain can be either mapped
onto a single computational domain or it must be divided into subdomains in order to generate the most suitable mesh.
The initial mesh is generated by continuation techniques. The fluid problem is always solved in the entire domain and
does not require restructuring and interpolation of the variables in a new mesh in order that the simulations retain their
high accuracy. For optimizing the quality of the mesh, constraints (e.g. generalized node distributions) along specific sur-
faces of the geometry were imposed, alleviating in this way the stiffening of the scheme when exponential attractive
terms are used in the elliptic equations [13,17]. Another improvement that was incorporated herein is a local refinement
algorithm, for increasing the resolution of the mesh along the free surfaces while keeping the computation cost as a low as
possible.

The proposed schemes were tested in two highly demanding problems with free surfaces and complex geometries: (a)
bubble growth in viscoelastic filaments undergoing stretching where a single domain with multiple mappings suffice and
(b) interacting bubbles in a viscous medium, where splitting into subdomains and multiple mappings are necessary. In
our first application the mesh is generated by enforcing the node distribution along lines passing through the singular
points of the domain. In essence, these lines play the role of internal pseudo-boundaries, but the domain is not actually
decomposed for generating the mesh. This approach may not always work as demonstrated by a couple of examples in
our second application making the second method indispensable. This is based on decomposition of the physical domain
to subdomains defined in local, even different, but most appropriate for each subdomain coordinate systems, while the
flow equations are written in the entire domain. This method is the most powerful and general and we believe that it
can be applied in any 3D problem. In both cases, we managed to reduce the memory requirements up to 30% and the
computational time up to 80% by applying the local refinement method around the deforming interfaces for achieving
accuracy similar with or higher than that of the finest mesh without local refinement. Despite the large deformation
of the fluid volume, the accuracy of the calculations remained high throughout the simulations, and no remeshing was
performed. Although the boundaries of the physical domain have actually moved a lot, the mesh generated by our qua-
si-elliptic method in the time-independent computational domain does not need to be readjusted. This is important in
order to decrease numerically induced instabilities, numerical diffusion and perform numerical simulations even with vis-
coelastic fluids.

Currently, we are working on the extension of this methodology to 3D domains. In this case, for example, the motion and
deformation of multiple bubbles away from the axis of symmetry can be computed and the applications studied here or oth-
ers, such as the dynamics of emulsions in flow, growth of cavitating bubbles behind hydrofoils can be accurately simulated.
Certainly then, this methodology would have a greater impact.
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